Abstract

We have reviewed the evidence supporting the notion that the fibrillar extracellular matrix on the basal surface of the blastocoel roof in amphibian embryos directs and guides mesodermal cell migration during gastrulation. Based on extensive experimental evidence in several different systems, we conclude the following: (i) the fibrillar extracellular matrix contains fibronectin (FN) and laminin. (ii) The fibrils are oriented in such a way as to promote directional migration of mesodermal cells during migration. (iii) We have used several different probes to disrupt the interaction between migrating mesodermal cells and the fibrillar extracellular matrix. These probes include: (a) nucleocytoplasmic and interspecific hybridization. Such embryos have defects in FN synthesis and gastrulation. (b) Fab' fragments of anti-FN and anti-integrin VLA-5 IgGs prohibit mesodermal cell adhesion both in vitro and in vivo and gastrulation is arrested. (c) Peptides containing the RGDS sequence specifically inhibit interactions between migrating mesodermal cells and the FN-fibrillar matrix. (d) Tenascin blocks cell adhesion to FN in vitro and gastrulation in vivo. (e) Antibodies against the cytoplasmic domain of beta 1 integrin, when injected into blastomeres, prevent FN-fibrillogenesis in progeny of injected blastomeres and delay mesodermal cell migration selectively in the progeny of injected blastomeres but not in the uninjected blastomere progeny.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call