Abstract
To determine if integrin-mediated signaling results in activation of chondrocyte mitogen-activated protein (MAP) kinases that lead to increased expression of matrix metalloproteinase 13 (MMP-13; collagenase 3), a potent mediator of cartilage matrix degradation. Human articular chondrocytes isolated from normal ankle and knee cartilage obtained from tissue donors were cultured in monolayers. The cells were treated with a 120-kd fibronectin fragment (FN-f) that binds the alpha5beta1 integrin or with antibodies to specific integrin receptors. Activation of MAP kinases was determined by immunoblotting with phosphospecific antibodies. MMP production was measured by gelatin zymography, and MMP-13 production and activation were determined by immunoblotting and by a fluorogenic peptide assay. Human articular chondrocytes were found to respond to the 120-kd FN-f and to adhesion-blocking antibodies to the alpha2beta1 and alpha5beta1 integrins with increased phosphorylation of the extracellular signal-regulated kinase 1 (ERK1)/ERK2, c-Jun N-terminal kinase (JNK), and p38 MAP kinases. Intact FN and integrin-blocking antibodies to alpha1, alpha3, and alphaVbeta3 and a nonblocking alpha5 antibody had no effect. After MAP kinase activation, increased phosphorylation of c-Jun and the nuclear factor kappaB inhibitor was noted, followed by increased pro- and activated MMP-13 in the conditioned media. Inhibitors of mitogen-activated protein kinase kinase, p38, and JNK were each able to inhibit increased MMP-13 production, while the interleukin-1 receptor antagonist (IL-1Ra) protein did not. However, the IL-1Ra partially inhibited FN-f-induced activation of MMP-13. Integrin-mediated MAP kinase signaling stimulated by FN-f is associated with increased production and release of pro- and active MMP-13. Autocrine production of IL-1 appears to result in additional MMP-13 activation. These processes may play a key role in feedback loops responsible for progressive cartilage degradation in arthritis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.