Abstract

Fibronectin (FN) is a high-molecular-weight extracellular matrix protein that contains the RGDS motif, which is required to bind to integrins. Synthetic RGDS peptides have been reported to compete with FN to bind to the cell surface and inhibit the function of FN. Here, we identified that synthetic RGDS peptides significantly inhibit human enterovirus 71 (EV71) infection in cell cultures. In addition, mice treated with RGDS peptides and infected with EV71 had a significantly higher survival rate and a lower viral load than the control group. Because RGDS peptides affect the function of FN, we questioned whether FN may play a role in virus infection. Our study indicates that overexpression of FN enhanced EV71 infection. In contrast, knockout of FN significantly reduced viral yield and decreased the viral binding to host cells. Furthermore, EV71 entry, rather than intracellular viral replication, was blocked by FN inhibitor pretreatment. Next, we found that FN could interact with the EV71 capsid protein VP1, and further truncated-mutation assays indicated that the D2 domain of FN could interact with the N-terminal fragment of VP1. Taken together, our results demonstrate that the host factor FN binds to EV71 particles and facilitates EV71 entry, providing a potential therapy target for EV71 infection.IMPORTANCE Hand, foot, and mouth disease outbreaks have occurred frequently in recent years, sometimes causing severe neurological complications and even death in infants and young children worldwide. Unfortunately, no effective antiviral drugs are available for human enterovirus 71 (EV71), one of the viruses that cause hand, foot, and mouth disease. The infection process and the host factors involved remain unknown, although several receptors have been identified. In this study, we found that the host factor fibronectin (FN) facilitated EV71 replication by interacting with EV71 particles and further mediated their entry. The RGDS peptide, an FN inhibitor, significantly inhibited EV71 replication in both RD cells and mice. In conclusion, our research identified a new host factor involved in EV71 infection, providing a new potential antiviral target for EV71 treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.