Abstract
Campylobacter fetus is a recognized pathogen of cattle and sheep that can also infect humans. No adhesins specific for C. fetus have to date been identified; however, bacterial attachment is essential to establish an infecting population. Scanning electron microscopy revealed C. fetus attachment to the serosal surface of human colonic biopsy explants, a location consistent with the presence of the extracellular matrix (ECM). To determine whether the ECM mediated C. fetus adherence, 7 C. fetus strains were assessed in a solid-phase binding assay for their ability to bind to immobilized ECM components. Of the ECM components assayed, adherence to fibronectin was noted for all strains. Attachment to ECM components was neither correlated with S-layer expression nor with cell-surface hydrophobicity. Ligand immunoblots, however, identified the S-layer protein as a major site of fibronectin binding, and modified ECM binding assays revealed that soluble fibronectin significantly enhanced the attachment of S-layer-expressing C. fetus strains to other ECM components. Soluble fibronectin also increased C. fetus adherence to INT 407 cells. This adherence was inhibited when INT 407 cells were incubated with synthetic peptides containing an RGD sequence, indicating that integrin receptors were involved in fibronectin-mediated attachment. Together, this data suggests that C. fetus can bind to immobilized fibronectin and use soluble fibronectin to enhance attachment to other ECM components and intestinal epithelial cells. In vivo, fibronectin would promote bacterial adherence, thereby, contributing to the initial interaction of C. fetus with mucosal and submucosal surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.