Abstract

Objectives: The prevailing linear reductionist medical model seems unable to explain complex multisymptomatic illnesses such as fibromyalgia (FM) and similar maladies. Paradigms derived from the complexity theory may provide a coherent framework for these elusive illnesses. Along these lines is the proposal that FM represents a degradation of our main complex adaptive system (the autonomic nervous system, ANS), in a failed effort to adjust to a hostile environment. Healthy complex systems have fractal structures. Heart rate fractal-like variability reflects resilient ANS performance. Our aim was to measure the heart rate variability (HRV) fractal scaling index in FM patients and to correlate this index with clinical symptoms.Method: We studied 30 women with FM and 30 controls. All participants filled out questionnaires assessing the severity of FM. The HRV fractal scaling index was estimated during 24 h using detrended fluctuation analysis (DFA).Results: The fractal scaling index alpha-1 was higher in FM patients than in controls (mean ± sd: 1.22 ± 0.10 vs. 1.16 ± 0.09; p = 0.031). There was a positive correlation between the fractal scaling index alpha-1 and the visual analogue scale (VAS) for depression (Spearman’s ρ = 0.36, p = 0.04).Conclusions: The heart rate fractal exponent alpha-1 is altered in FM patients, suggesting a rigid ANS performance. This tangible non-linear finding supports the notion that FM may represent a degradation of our main complex adaptive system, namely the ANS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call