Abstract

Systemic sclerosis (SSc) is a devastating chronic autoimmune connective tissue disease characterized by vasculopathy, autoimmunity with inflammation, and progressive fibrogenesis. The current paradigm of the pathogenesis of SSc is that of an unknown initial trigger, leading to a complex interaction of immune cells, endothelial cells, and fibroblasts, producing cytokines, growth and angiogenic factors, and resulting in uncontrolled and persistent tissue fibrogenesis by an altered mesenchymal cell compartment. Animal models are of utmost importance to investigate the different steps in the pathogenesis. This review will elaborate on recent findings in established and more recently developed animal models, presenting data on compounds that are in or ready to be translated into clinical trials, or provide interesting new findings in the understanding of the pathophysiology of SSc. We focus on recent findings concerning the vessel-extracellular matrix interaction, the initial triggering aggressor, the concept of autoimmunity and inflammatory changes, the effector cells and their origins, and the complex interaction of the different signaling pathways in fibrogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.