Abstract
Fibroblasts are typically described as cells that produce extracellular matrix, contribute to the formation of connective tissue, and maintain the structural framework of tissues. Fibroblasts are the first cell type to be transdifferentiated into inducible pluripotent stem cells (iPSCs), demonstrating their versatility and reprogrammability. Currently, there is relatively extensive characterization of the anatomical, molecular, and functional diversity of fibroblasts in different peripheral organs and tissues. With recent advances in single cell RNA sequencing, heterogeneity and diversity of fibroblasts in the central nervous system (CNS) have also begun to emerge. Based on their distinct anatomical locations in the meninges, perivascular space, and choroid plexus, as well as their molecular diversity, important roles for fibroblasts in the CNS have been proposed. Here, we draw inspirations from what is known about fibroblasts in peripheral tissues, in combination with their currently identified CNS locations and molecular characterizations, to propose potential functions of CNS fibroblasts in health and disease. Future studies, using a combination of technologies, will be needed to determine the bona fide in vivo functions of fibroblasts in the CNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.