Abstract

BackgroundFibrous scars frequently form at the sites of bone nonunion when attempts to repair bone fractures have failed. However, the detailed mechanism by which fibroblasts, which are the main components of fibrous scars, impede osteogenesis remains largely unknown.ResultsIn this study, we found that fibroblasts compete with osteogenesis in both human bone nonunion tissues and BMP2-induced ectopic osteogenesis in a mouse model. Fibroblasts could inhibit the osteoblastic differentiation of mesenchymal stem cells (MSCs) via direct and indirect cell competition. During this process, fibroblasts modulated the nuclear-cytoplasmic shuttling of YAP in MSCs. Knocking down YAP could inhibit osteoblast differentiation of MSCs, while overexpression of nuclear-localized YAP-5SA could reverse the inhibition of osteoblast differentiation of MSCs caused by fibroblasts. Furthermore, fibroblasts secreted DKK1, which further inhibited the formation of calcium nodules during the late stage of osteogenesis but did not affect the early stage of osteogenesis. Thus, fibroblasts could inhibit osteogenesis by regulating YAP localization in MSCs and secreting DKK1.ConclusionsOur research revealed that fibroblasts could modulate the nuclear-cytoplasmic shuttling of YAP in MSCs, thereby inhibiting their osteoblast differentiation. Fibroblasts could also secrete DKK1, which inhibited calcium nodule formation at the late stage of osteogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call