Abstract

This study aimed to investigate the impact of fibroblasts (MRC-5) on the extracellular matrix (ECM) microenvironment of endothelial cells (ECs) during the vascularization of skin-derived ECM hydrogel in vitro. Two types of ECs were studied: human dermal microvascular endothelial cells (HMEC) and human pulmonary microvascular endothelial cells (HPMEC). Results showed that the presence of MRC-5 fibroblasts increased the stiffness of the hydrogel and led to larger fiber diameters and increased porosity. Extensive collagen fiber remodeling occurred in the ECM hydrogel with MRC-5 fibroblasts. Additionally, higher levels of fibulin-1 and fibronectin were deposited in the hydrogel when co-cultured with MRC-5 fibroblasts. These findings suggest that MRC-5 fibroblasts play a role in modifying the ECM microenvironment, promoting vascularization through dynamic ECM remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.