Abstract

Cardiac fibrosis, a common pathology in inherited and acquired heart diseases, necessitates the identification of diagnostic and therapeutic targets. Methyltransferase Like 1 (METTL1), an enzyme responsible for RNA modification by methylating guanosine to form m7G, is an emerging area of research in understanding cellular processes and disease pathogenesis. Dysregulation of m7G modification has been implicated in various diseases. However, the role of METTL1 in cardiac fibrosis remains unclear. This study aimed to investigate the role of METTL1 in myocardial infarction-induced heart failure and cardiac fibrosis. Our findings demonstrate that elevated METTL1-mediated RNA m7G methylation is observed in cardiac fibrosis tissues and TGF-β1-induced cardiac fibroblast proliferation and myofibroblast transformation. Furthermore, fibroblast-specific knockout of METTL1 attenuated myocardial infarction-induced heart failure and cardiac fibrosis. Additionally, METTL1 knockout decreased m7G methylated fibrotic genes and impaired their translation efficiency. These results suggest a novel pro-fibrosis role of METTL1-mediated RNA m7G methylation, highlighting its potential as a therapeutic target in cardiac fibrosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call