Abstract

Recent findings have pointed out the role of neurotrophic factors in the survival and maintenance of neurons of the auditory system. Basic fibroblast growth factor (bFGF, FGF-2) is a potent neurotrophic molecule whose actions can be seen in the central and peripheral nervous systems. In the present study, FGF-2 immunoreactivity was analyzed in the auditory pathways of the adult rat, employing a well-characterized polyclonal antibody against FGF-2. In the cochlea, FGF-2 immunoreactivity was observed in the inner and outer hair cells of the organ of Corti, spiral ganglion neurons, spiral limbus, and stria vascularis. Stereological methods employing optical fractionator revealed the presence of 84.5, 15, and 0.5% of spiral ganglion neurons possessing FGF-2 immunoreactivity of strong, moderate, and weak intensity, respectively. In the central auditory pathways, FGF-2 immunoreactivity was found in the cytoplasm of the neurons of the cochlear nuclei, trapezoid body nuclei, medial geniculate nucleus, and inferior colliculus. The two-color immunoperoxidase method showed FGF-2 immunoreactivity in the nuclei of astrocytes throughout the central auditory pathway. Computer-assisted microdensitometric image analysis revealed higher levels of specific mean gray values of FGF-2 immunoreactivity in the trapezoid body and ventral cochlear nucleus and also in the spiral ganglion and inner hair cells. Sections incubated with FGF-2 antibody preabsorbed with human recombinant FGF-2 showed no immunoreaction in the majority of the studied regions, exhibiting only a slight immunoreactive product in the hair cells of the organ of Corti. Furthermore, no changes in immunoreactivity were observed in sections incubated with FGF-2 antiserum preincubated with human recombinant acidic FGF (FGF-1). The findings suggest that FGF-2 may exert paracrine and autocrine actions on neurons of the central and peripheral auditory systems and may be of importance in the mechanism of hearing diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.