Abstract

Pituitary adenylyl cyclase activating peptide (PACAP) has been shown either to stimulate or to inhibit neural cell proliferation depending on the origin of the cell population. We show here that, depending on the presence or absence of fibroblast growth factor-2 (FGF-2, also called basic FGF), PACAP may either stimulate or inhibit DNA synthesis in neural precursors isolated from embryonic day 10.5 mouse hindbrain. In the absence of FGF-2, PACAP stimulated 3H-thymidine incorporation in a dose-dependent manner. This stimulatory action was unaffected by antagonists of protein kinases A and C but was abolished in the presence of the MEK1/2 antagonist PD98059. In contrast, when FGF-2 was present, PACAP inhibited DNA synthesis. This inhibitory action was insensitive to PD98059 but was fully blocked by the protein kinase A (PKA) inhibitor H89. The differential blockades by MEK1/2 and PKA inhibitors indicate that the FGF-2-induced switch in PACAP action on DNA synthesis was accomplished by a change in PACAP signaling pathways. We hypothesize that the actions of PACAP in the specific parts of the developing nervous system are determined in part by the presence or absence of FGFs and other growth factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.