Abstract

Increased expression of osteopontin (OPN), fibroblast growth factors (FGFs), and their type-1 receptor (FGFR-1) is associated with neointima formation and atherosclerosis. This study tested the hypothesis that ligand activation of FGFR-1 stimulates OPN expression in rat aortic smooth muscle cells (RASMCs), explored the signaling pathway involved, and assessed the functional consequences of activating this pathway on adventitial fibroblast (AF) migration in vitro. Exogenous FGF-1 stimulated expression of OPN mRNA and protein in RASMCs in vitro in a dose- and time-dependent manner. OPN mRNA induction by FGF-1 was completely inhibited by either actinomycin D or cycloheximide, selective inhibitors of RNA polymerase and protein synthesis, respectively. OPN mRNA induction by FGF-1 was attenuated by PD 166866, a highly selective and potent FGFR-1 tyrosine kinase inhibitor. Addition of either PP2 or PD98059, specific inhibitors of Src and mitogen-activated extracellular signal-regulated kinase (MEK)/mitogen-activated protein (MAP) kinases, respectively, attenuated FGF-1-stimulated OPN mRNA expression. FGF-1 treatment of RASMCs enhanced RASMC-conditioned medium-stimulated AF migration; this effect was inhibited by pretreatment of RASMCs with either PD166866 or PP2. Immunodepletion of OPN from RASMC-conditioned medium inhibited both basal and FGF-1-stimulated AF migration. This in vitro study provided a first indication that ligand-activated FGFR-1 plays a significant role in upregulation of OPN expression at the transcriptional level via signaling to Src/MEK/MAP kinases in RASMCs and that this pathway is functionally significant in mediating AF migration via stimulation of OPN expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.