Abstract

Human atheroma calcification occurs secondary to repetitive injury/remodelling of the vessel wall and might be initiated by adherence of mineral-loaded fetuin-A whether or not professional matrix mineralizing cells are present. The aim was to investigate the contribution of fibroblast growth factor (FGF)-23 to ectopic mineralization. Serial sections of formalin-fixed paraffin-embedded human carotid atheroma (n = 54) were investigated with respect to (i) size and distribution of calcific deposits, (ii) indicators of chondrogenic/osteogenic transformation, and (iii) expression of fetuin-A and FGF-23. All specimens were calcified and SOX-9, collagen type II, cathepsin-K, fetuin-A and FGF-23 expression was seen in 46, 53, 53, 54 and 48 specimens, respectively. The intracellular detection of FGF-23 (45/48) indicates local synthesis. Whereas fetuin-A expression was seen also within areas of vascular smooth muscle actin-positive cells adjacent to calcific deposits, FGF-23 expression was apparently restricted to the mineralization-prone areas. Both local expression and FGF-23 serum concentrations were significantly associated with the degree of atheroma calcification. Besides the induction of bone islets and subsequent mineral deposition, severe remodelling of the vessel wall is sufficient to create a mineralizable fetuin-A-attracting microenvironment. FGF-23 might contribute to the formation of proper mineral, i.e. control local phosphate concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.