Abstract

Thalamic innervation of each neocortical area is vital to cortical function, but the developmental strategies that guide axons to specific areas remain unclear. We took a new approach to determine the contribution of intracortical cues. The cortical patterning molecule fibroblast growth factor 8 (FGF8) was misexpressed in the cortical primordium to rearrange the area map. Thalamic axons faithfully tracked changes in area position and innervated duplicated somatosensory barrel fields induced by an ectopic source of FGF8, indicating that thalamic axons indeed use intracortical positional information. Because cortical layers are generated in temporal order, FGF8 misexpression at different ages could be used to shift regional identity in the subplate and cortical plate either in or out of register. Thalamic axons showed strikingly different responses in the two different conditions, disclosing sources of positional guidance in both subplate and cortical plate. Unexpectedly, axon trajectories indicated that an individual neocortical layer could provide not only laminar but also area-specific guidance. Our findings demonstrate that thalamocortical axons are directed by sequential, positional cues within the cortex and implicate FGF8 as an indirect regulator of thalamocortical innervation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.