Abstract

Background: The effects of fibroblast growth factor 2 (FGF-2) on healing after surgical repair of chronic rotator cuff (RC) tears remain unclear. Hypothesis: FGF-2 enhances tenogenic healing response, leading to biomechanical and histological improvement of repaired chronic RC tears in rats. Study Design: Controlled laboratory study. Methods: Adult male Sprague-Dawley rats (n = 117) underwent unilateral surgery to refix the supraspinatus tendon to its insertion site 3 weeks after detachment. Animals were assigned to either the FGF-2 group or a control group. The effects of FGF-2 were assessed via biomechanical tests at 3 weeks after detachment and at 6 and 12 weeks postoperatively and were assessed histologically and immunohistochemically for proliferating cell nuclear antigen and mesenchymal stem cell (MSC)–related markers at 2, 6, and 12 weeks postoperatively. The expression of tendon/enthesis-related markers, including SRY-box 9 (Sox9), scleraxis (Scx), and tenomodulin (Tnmd), were assessed by real-time reverse transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. The effect of FGF-2 on comprehensive gene expressions at the healing site was evaluated by microarray analysis. Results: The FGF-2 group showed a significant increase in mechanical strength at 6 and 12 weeks compared with control; the FGF-2 group also showed significantly higher histological scores at 12 weeks than control, indicating the presence of more mature tendon-like tissue. At 12 weeks, Scx and Tnmd expression increased significantly in the FGF-2 group, whereas no significant differences in Sox9 were found between groups over time. At 2 weeks, the percentage of positive cells expressing MSC-related markers increased in the FGF-2 group. Microarray analysis at 2 weeks after surgery showed that the expression of several growth factor genes and extracellular matrix–related genes was influenced by FGF-2 treatment. Conclusion: FGF-2 enhanced the formation of tough tendon-like tissues including an increase in Scx- or Tnmd-expressing cells at 12 weeks after surgical repair of chronic RC tears. The increase in mesenchymal progenitors and the changes in gene expression upon FGF-2 treatment in the early phase of healing appear to be related to a certain favorable microenvironment for tenogenic healing response of chronic RC tears. Clinical Relevance: These findings may provide advantages in therapeutic strategies for patients with RC tears.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call