Abstract
Does fibrin introduced into the extracellular matrix affect the growth and maturation of individual primate follicles during encapsulated three-dimensional (3D) culture? While not altering follicle survival, fibrin-alginate (FIBRIN) improves macaque primary, but not secondary, follicle development during encapsulated 3D culture in terms of growth, steroidogenesis, anti-Müllerian hormone (AMH)/vascular endothelial growth factor (VEGF) production and oocyte maturation. Efforts to grow non-human primate ovarian follicles from the secondary to the antral stage during encapsulated 3D culture have been successful. However, the growth and maturation of primary follicles in vitro has not been reported in primates, especially in chemically defined conditions. In vitro follicle maturation was investigated using the rhesus macaque (Macaca mulatta). Ovaries (n = 7 pairs) were obtained during the early follicular phase of the menstrual cycle (cycle day 1-4). Primary (80-120 µm diameter) and secondary (125-225 µm diameter) follicles were isolated mechanically, randomly assigned to experimental groups, encapsulated into alginate (0.25% w/v) or FIBRIN (25 mg/ml fibrinogen-0.25% alginate) and cultured for 13 and 5 weeks, respectively. Individual follicles were cultured in alpha minimum essential medium supplemented with FSH. Follicle survival and growth were assessed by microscopy. Follicles that reached the antral stage were treated with recombinant hCG. Metaphase II (MII) oocytes were inseminated via ICSI. Follicle morphology was evaluated by hematoxylin and eosin (H&E) staining. Immunohistochemistry was performed for cytochrome P450 family 17 subfamily A polypeptide 1 (CYP17A1) and 19 subfamily A polypeptide 1 (CYP19A1). Culture medium was analyzed for estradiol (E2) and progesterone by chemiluminescence, androstenedione (A4) by radioimmunoassay, as well as anti-Müllerian hormone (AMH) and vascular endothelial growth factor (VEGF) by enzyme-linked immunosorbent assay. A total of 105 primary and 133 secondary follicles were collected. The presence of fibrin in the alginate matrix had no effect on either primary or secondary follicle survival. Growing primary and secondary follicles formed an antrum at Weeks 9 and 3, respectively. The percentage of growing follicles was higher (P < 0.05) for primary follicles cultured in FIBRIN than alginate at Week 13. The diameters were larger for the growing secondary follicles cultured in alginate than FIBRIN at Week 5 (P < 0.05). H&E staining revealed the typical morphology for small antral follicles. CPY17A1 immunostaining was detected in theca cells, while CYP19A1 was observed in granulosa cells. E2 increased (P < 0.05) during antrum formation in growing follicles at Week 9 for primary and Week 3 for secondary follicles. AMH levels in medium from growing primary follicles increased (P < 0.05) after Week 4 with peak levels at Weeks 9-11. AMH increased (P < 0.05) in growing secondary follicles at Weeks 3-5. VEGF levels in medium were elevated (P < 0.05) in growing primary follicles at Week 9. VEGF increased (P < 0.05) in medium from growing secondary follicles at Weeks 3-5. E2, AMH and VEGF production was higher (P < 0.05) in primary follicle culture with FIBRIN than alginate alone. One primary follicle cultured in FIBRIN (1 of 5 follicles harvested) and a secondary follicle cultured in alginate alone (1 of 15 follicles harvested) yielded an MII oocyte. The fertilized oocyte from primary follicle culture arrested without cell division after fertilization, while the oocyte from secondary follicle culture cleaved and reached the morula stage. The study reports on in vitro development and function of individual macaque follicles, that is limited to the interval from the primary and secondary stage to the small antral stage. The findings await translation to human ovarian follicles. The 3D model for primate follicle development offers a unique opportunity to investigate the growth and regulation of primate primary, as well as secondary follicles, and their enclosed oocytes, as they grow to the antral stage by monitoring and manipulating factors or signaling pathways in vitro. Since primate primary follicles, in addition to secondary follicles, can be cultured to the antral stage to provide mature oocytes, they represent an additional source of pre-antral follicles for in vitro follicle maturation with the potential to provide gametes for assisted reproductive technology as an option for fertility preservation in women, including patients with cancer. This work was supported by The Oncofertility Consortium (NIH U54 RR024347-HD058294, PL1-EB008542), NIH U54-HD18185 (Eunice Kennedy Shriver Specialized Cooperative Centers Program in Reproduction and Infertility Research), NIH ORWH/NICHD 2K12HD043488 (BIRCWH), Oregon National Primate Research Center 8P51OD011092. There are no conflicts of interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.