Abstract

Retinal pigment epithelium (RPE) transplantation for the treatment of macular degeneration has been studied for over 30 years. Human clinical trials have demonstrated that RPE monolayers exhibit improved cellular engraftment and survival compared to single cell suspensions. The use of a scaffold facilitates implantation of a flat, wrinkle-free, precisely placed monolayer. Scaffolds currently being investigated in human clinical trials are non-degradable which results in the introduction of a chronic foreign body. To improve RPE transplant technology, a degradable scaffold would be desirable. Using human fibrin, we have generated scaffolds that support the growth of an RPE monolayer in vitro. To determine whether these scaffolds are degraded in vivo, we developed a surgical approach that delivers a fibrin hydrogel implant to the sub-retinal space of the pig eye and determined whether and how fast they degraded. Using standard ophthalmic imaging techniques, the fibrin scaffolds were completely degraded by postoperative week 8 in 5 of 6 animals. Postmortem histologic analysis confirmed the absence of the scaffold from the subretinal space at 8 weeks, and demonstrated the reattachment of the neurosensory retina and a normal RPE–photoreceptor interface. When mechanical debridement of a region of native RPE was performed during implantation surgery degradation was accelerated and scaffolds were undetectable by 4 weeks. These data represent the first in situ demonstration of a fully biodegradable scaffold for use in the implantation of RPE and other cell types for treatment of macular degeneration and other retinal degenerative diseases.

Highlights

  • Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, with an estimated 196 million cases globally by 2020 [1]

  • Implants were stored in phosphate buffered saline (PBS) at room temperature

  • We found that a surgically implanted fibrin scaffold placed in the sub-retinal space consistently degraded within 8 weeks, without damage to the neurosensory retina or endogenous Retinal pigment epithelium (RPE)

Read more

Summary

Introduction

Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, with an estimated 196 million cases globally by 2020 [1]. AMD causes a loss of central, high acuity vision, and is thought to result from dysfunction of the RPE. The concept of treating AMD and other forms of macular degeneration using RPE transplantation has been studied since the late 1980s [2,3]. Until recently, few clinical trials had been conducted due to lack of an abundant RPE cell source. Pluripotent stem cells offer an abundant cell source with multiple studies demonstrating reliable differentiation into RPE cells [4,5,6,7].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.