Abstract

BackgroundSynthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix.MethodsPLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM).ResultsCell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for cartilage-specific markers, collagen type II and aggrecan core protein. Interestingly, suppression of cartilage dedifferentiation marker; collagen type I was observed after 2 and 3 weeks of in vitro culture. The sulphated-glycosaminoglycan (sGAG) production in fibrin/PLGA was significantly higher than in PLGA.ConclusionFibrin/PLGA promotes early in vitro chondrogenesis of rabbit articular chondrocytes. This study suggests that fibrin/PLGA may serve as a potential cell delivery vehicle and a structural basis for in vitro tissue-engineered articular cartilage.

Highlights

  • Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering

  • Isolated chondrocytes were cultured at a density of 5,000 cells/cm2 in F12 nutrient mixture (F12) and Dulbecco's Modified Eagle Medium (DMEM) (Gibco, Grand Island, NY) supplemented with 10% foetal bovine serum (FBS) (Gibco) with the presence of antibiotics and antimycotic (Gibco), 200 mM L-glutamine (Gibco) and 50 μg/ml of ascorbic acid (Sigma)

  • Cells proliferation was gradually increased from day-1 until day-7 with the fibrin/Poly(lactic-co-glycolic acid) (PLGA) hybrid construct showed significantly higher cells proliferation activity (p < 0.05) compared to PLGA at day-3

Read more

Summary

Introduction

Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Autologous chondrocytes implantation (ACI) was first published by Brittberg et al [1] in 1994. This technique is quickly becoming a successful and viable alternative treatment in orthopaedic surgery to total knee replacement, arthroscopy, and abrasion therapy. We have successfully performed autologous 'chondrocytes-fibrin' construct (ACFC) implantation in sheep model [8,9,10] with good results. Our aim is to improve the scaffolding material of our in vitro 3D cartilage construct

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call