Abstract

The universal structural role of collagen fiber networks has motivated the development of collagen gels, films, coatings, injectables, and other formulations. However, reported synthetic collagen fiber fabrication schemes have either culminated in short, discontinuous fiber segments at unsuitably low production rates, or have incompletely replicated the internal fibrillar structure that dictates fiber mechanical and biological properties. We report a continuous extrusion system with an off-line phosphate buffer incubation step for the manufacture of synthetic collagen fiber. Fiber with a cross-section of 53+ or - 14 by 21 + or - 3 microm and an ultimate tensile strength of 94 + or - 19 MPa was continuously produced at 60 m/hr from an ultrafiltered monomeric collagen solution. The effect of collagen solution concentration, flow rate, and spinneret size on fiber size was investigated. The fiber was further characterized by microdifferential scanning calorimetry, transmission electron microscopy (TEM), second harmonic generation (SHG) analysis, and in a subcutaneous murine implant model. Calorimetry demonstrated stabilization of the collagen triple helical structure, while TEM and SHG revealed a dense, axially aligned D-periodic fibril structure throughout the fiber cross-section. Implantation of glutaraldehyde crosslinked and noncrosslinked fiber in the subcutaneous tissue of mice demonstrated limited inflammatory response and biodegradation after a 6-week implant period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.