Abstract

Collagen type I is a material widely used for 3D cell culture and tissue engineering. Different architectures, such as gels, sponges, membranes, and nanofibers, can be fabricated with it. In collagen hydrogels, the formation of fibrils and fibers depends on various parameters, such as the source of collagen, pH, temperature, concentration, age, etc. In this work, we study the fibrillogenesis process in collagen type I hydrogels with different types of microbeads embedded, using optical techniques such as turbidity assay and confocal reflectance microscopy. We observe that microbeads embedded in the collagen matrix hydrogels modify the fibrillogenesis. Our results show that carboxylated fluorescent microbeads accelerate 3.6 times the gelation, while silica microbeads slow down the formation of collagen fibrils by a factor of 1.9, both compared to pure collagen hydrogels. Our observations suggest that carboxylate microbeads act as nucleation sites and the early collagen fibrils bind to the microbeads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.