Abstract

Thoracic aortic aneurysms (TAA) in Marfan syndrome, caused by fibrillin-1 mutations, are characterized by elevated cytokines and fragmentated elastic laminae in the aortic wall. This study explored whether and how specific fibrillin-1-regulated miRNAs mediate inflammatory cytokine expression and elastic laminae degradation in TAA. miRNA expression profiling at early and late TAA stages using a severe Marfan mouse model (Fbn1mgR/mgR) revealed a spectrum of differentially regulated miRNAs. Bioinformatic analyses predicted the involvement of these miRNAs in inflammatory and extracellular matrix-related pathways. We demonstrate that upregulation of pro-inflammatory cytokines and matrix metalloproteinasesis a common characteristic of mouse and human TAA tissues. miR-122, the most downregulated miRNA in the aortae of 10-week-old Fbn1mgR/mgR mice, post-transcriptionally upregulated CCL2, IL-1β and MMP12. Similar data were obtained at 70weeks of age using Fbn1C1041G/+ mice. Deficient fibrillin-1-smooth muscle cell interaction suppressed miR-122 levels. The marker for tissue hypoxia HIF-1α was upregulated in the aortic wall of Fbn1mgR/mgR mice, and miR-122 was reduced under hypoxic conditions in cell and organ cultures. Reduced miR-122 was partially rescued by HIF-1α inhibitors, digoxin and 2-methoxyestradiol in aortic smooth muscle cells. Digoxin-treated Fbn1mgR/mgR mice demonstrated elevated miR-122 and suppressed CCL2 and MMP12 levels in the ascending aortae, with reduced elastin fragmentation and aortic dilation. In summary, this study demonstrates that miR-122 in the aortic wall inhibits inflammatory responses and matrix remodeling, which is suppressed by deficient fibrillin-1-cell interaction and hypoxia in TAA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.