Abstract
Over a time course of months, the stability of atrial fibrillation (AF) gradually increases and the efficacy of pharmacological cardioversion declines both in humans and in animal models. Changes in fibrillatory conduction over this period largely are unexplored. Goats were instrumented with an atrial endocardial pacemaker lead and a burst pacemaker. AF was maintained for 3 weeks (short-term AF [ST], n = 10) or 6 months (long-term AF [LT], n = 7). AF could be cardioverted pharmacologically at the early time point (persistent AF), but not at the later time point (permanent AF). At follow-up, a high-resolution mapping electrode was used to record epicardial conduction patterns in the free walls of the right atrium (RA) and left atrium (LA). A new method for mapping of fibrillation waves was used to describe AF conduction patterns. Wavefronts propagated uniformly during slow pacing in both groups, although conduction velocity was significantly lower in the LT group (LA, 93 ± 14 versus 72 ± 10 cm/s; RA, 94 ± 8 versus 78 ± 8 cm/s). Median AF cycle length (AFCL) was not significantly different between the groups. However, the LT group showed highly complex activation patterns during AF, with an increased number of simultaneously propagating waves (LT group RA, 8.4 ± 3.0 waves/AFCL; LA, 12.8 ± 2.4 waves/AFCL; versus ST group RA, 4.3 ± 2.2 waves/AFCL; LA, 4.5 ± 2.5 waves/AFCL). Fibrillation waves in the LT group showed pronounced dissociation with large activation time differences. The incidence of waves newly appearing within the recording area also was increased in both atria. These alterations in conduction were accompanied by myocyte hypertrophy and increased endomysial fibrosis. Long-term AF in goats leads to dissociated conduction in the atrial free walls that may contribute to increased AF stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.