Abstract

Ternary blends composed of a liquid crystalline polymer (LCP), nano-SiO 2 and polysulfone (PSF) were prepared by melt blending. Very long and perfectly oriented LCP fibrils were in situ formed in capillary flows by adding 5 vol% of nano-SiO 2 to binary PSF/LCP blend. Dynamic rheology analysis indicated that the sharp increase of elasticity was caused by higher content of nano-SiO 2. Then the entrance angle was decreased and elongational stress increased when the polymer melt flowed through the abrupt contraction, which resulted in the fibrillation of LCP in PSF/LCP/nano-SiO 2 system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.