Abstract
The nonlinear optical Kerr effect, acting on optical pulses in fibres, creates spectral sidebands and noise correlations between these sidebands. The reduction of photon-number fluctuations of these pulses below the shot-noise limit by spectral filtering is well established in the anomalous dispersion regime which allows for soliton formation. Here it is demonstrated that a significant quantum-noise reduction with spectral filtering can also be reached for pulses in the normal dispersion regime. The filter function was optimized and the power dependence of the noise reduction was investigated. The best squeezing result is (1.2 ± 0.2) dB (corresponding to (2.6 ± 0.7) dB inferred for 100% detection efficiency).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.