Abstract

Periodontal regeneration is characterized by the attachment of oblique periodontal ligament fibres on the tooth root surface. To facilitate periodontal ligament attachment, a fibre-guiding tissue engineered biphasic construct was manufactured by melt electrowriting (MEW) for influencing reproducible cell guidance and tissue orientation. The biphasic scaffold contained fibre-guiding features in the periodontal ligament component comprising of 100 µm spaced channels (100CH), a pore size gradient in the bone component and maintained a highly porous and fully interconnected interface between the compartments. The efficacy of the fibre-guiding channels was assessed in an ectopic periodontal attachment model in immunocompromised rats. This demonstrated an unprecedented and systematic tissue alignment perpendicular to the dentin in the 100CH group, resulting in the close mimicry of native periodontal ligament architecture. In addition, the histology revealed high levels of tissue integration between the two compartments as observed by the perpendicular collagen attachment on the dentin surface, which also extended and infiltrated the scaffold's bone compartment. In conclusion, the 100 µm fibre-guiding scaffold induced a systematic tissue orientation at the dentin-ligament interface, resembling the native periodontium and thus resulting in enhanced alignment mimicking periodontal ligament regeneration. Statement of significancePeriodontitis is a prevalent inflammatory disease affecting a large portion of the adult population and leading to the destruction of the tooth-supporting structures (alveolar bone, periodontal ligament, and cementum). Current surgical treatments are unpredictable and generally result in repair rather than functional regeneration. A key feature of functional regeneration is the re-insertion of the oblique or perpendicularly orientated periodontal ligament fibre in both the alveolar bone and root surface. This study demonstrates that a highly porous scaffold featuring 100 µm width channels manufactured by the stacking of melt electrospun fibres, induced perpendicular alignment and attachment of the neo-ligament onto a dentine surface. The fibre guiding micro-architecture may pave the way for enhanced and more functional regeneration of the periodontium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call