Abstract

Abstract Single fibre fragmentation tests are performed for brittle fibres with Weibull strength distribution and different surface treatments. The fragmentation process is modelled and closed-form expressions for break spacing distribution are obtained. The model accounts for the effect of finite fibre length on the initial fragmentation as well as for break interaction on the advanced fragmentation stage. It is assumed that the exclusion zone due to fibre–matrix interface failure and stress recovery in the fibre is linearly dependent on the applied load. This assumption is validated experimentally. The derived theoretical average fragment length dependence on applied load is used to determine the fibre strength distribution parameters and the effective interfacial shear stress for carbon/epoxy single fibre composites with different fibre surface treatment and for glass/vinylester single fibre composite. Fragment length distribution is predicted for several load levels. Predictions are in good agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.