Abstract

Plant biomass is the most abundant renewable resource on the planet, and the biopolymers of lignocellulose are the foundation of ruminant production systems. Optimizing the saccharification of lignocellulosic feeds is a crucial step in their bioconversion to ruminant protein. Plant cell walls are chemically heterogeneous structures that have evolved to provide structural support and protection to the plant. Ruminants are the most efficient digesters of lignocellulose due to a rich array of bacteria, archaea, fungi, and protozoa within the rumen and lower digestive tract. Metagenomic and metatranscriptomic studies have enhanced the current understanding of the composition, diversity, and function of the rumen microbiome. There is particular interest in identifying the carbohydrate-active enzymes responsible for the ruminal degradation of plant biomass. Understanding the roles of cellulosomes- and polysaccharide-utilising loci in ruminal fibre degradation could provide insight into strategies to enhance forage utilisation by ruminants. Despite advancements in “omics” technology, the majority of rumen microorganisms are still uncharacterised, and their ability to act synergistically is still not understood. By advancing our current knowledge of rumen fibre digestion, there may be opportunity to further improve the productive performance of ruminants fed forage diets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.