Abstract

AbstractThis paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs’ elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, an induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of particular syntactic forms. We establish the correctness of our generic induction rule by reducing induction to iteration. We show how our rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The former lies outside the scope of Hermida and Jacobs’ work because it is not polynomial; as far as we are aware, no induction rules have been known to exist for the latter two in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set.KeywordsData TypeIteration OperatorNatural TransformationInduction RuleInductive TypeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.