Abstract

The compression of femtosecond laser pulses by linear quasiperiodic and periodic photonic multilayer structures is studied both experimentally and theoretically. We compare the compression performance of a Fibonacci and a periodic structure with similar total thickness and the same number of layers, and find the performance to be higher in the Fibonacci case, as predicted by numerical simulation. This compression enhancement takes place due to the larger group velocity dispersion at a defect resonance of the transmission spectrum of the Fibonacci structure. We demonstrate that the Fibonacci structure with the thickness of only 2.8 microm can compress a phase-modulated laser pulse by up to 30%. The possibility for compression of laser pulses with different characteristics in a single multilayer is explored. The operation of the compressor in the reflection regime has been modeled, and we show numerically that the reflected laser pulse is subjected to real compression: not only does its duration decrease but also its amplitude rises.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.