Abstract

We give an algorithm to classify singular fibers of finite cyclic covering fibrations of a ruled surface by using singularity diagrams. As the first application, we classify all fibers of 3-cyclic covering fibrations of genus 4 of a ruled surface and show that the signature of a complex surface with this fibration is non-positive by computing the local signature for any fiber. As the second application, we classify all fibers of hyperelliptic fibrations of genus 3 into 12 types according to the Horikawa index. We also prove that finite cyclic covering fibrations of a ruled surface have no multiple fibers if the degree of the covering is greater than 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.