Abstract

When an oblate spheroidal shell having an aspect ratio aib > (2-v)112, where v Poisson's ratio, is subject to hydrostatic compression, the semi-major, a, and semi-minor, b, axes experience strain of opposite sign. If two optical fibers, which comprise the arms of an interferometer, are wound around the equatorial and meridional circumferences of the spheroid, pressure changes induce a differential optical phase shift in the interferometer. Calculations of circumferential strain, polar and equatorial displacement, lowest natural frequency, buckling pressure, and optical pressure sensitivity of such a sensor are presented for thin shells. Sample designs based on these calculations are compared to other fiber-optic hydrophones of similar dimensions and materials. Preliminary designs will be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.