Abstract

ABSTRACTThe interface between a matrix and its reinforcement is critical to the final composite properties. There are different ways to enhance bonding between the reinforcing fiber and the matrix, based mainly on surface plasma treatments which usually decrease the fiber tensile strength. In this research, atomic layer deposition (ALD) was tested as a possible way to enhance the chemical bonding between the fiber and matrix in the hope that it would not effect the fiber tensile strength. Microbond tests were carried out to measure the effect of an ALD aluminum oxide (Al2O3) coating on the fiber/matrix interfacial shear strength, and the fiber tensile strength was measured in order to assess whether this treatment harms the fiber strength. The ultrahigh molecular weight polyethylene (UHMWPE) fibers that were coated by ALD with aluminum oxide (Al2O3) showed a significant increase in the interfacial shear strength without reducing the fibers’ ultimate tensile strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.