Abstract

In this paper, we prove that a normal subgroup N of an n-dimensional crystallographic group G determines a geometric fibered orbifold structure on the flat orbifold E^n/G, and conversely every geometric fibered orbifold structure on E^n/G is determined by a normal subgroup N of G, which is maximal in its commensurability class of normal subgroups of G. In particular, we prove that E^n/G is a fiber bundle, with totally geodesic fibers, over a b-dimensional torus, where b is the first Betti number of G. Let N be a normal subgroup of G which is maximal in its commensurability class. We study the relationship between the exact sequence 1 -> N -> G -> G/N -> 1 splitting and the corresponding fibration projection having an affine section. If N is torsion-free, we prove that the exact sequence splits if and only if the fibration projection has an affine section. If the generic fiber F = Span(N)/N has an ordinary point that is fixed by every isometry of F, we prove that the exact sequence always splits. Finally, we describe all the geometric fibrations of the orbit spaces of all 2- and 3-dimensional crystallographic groups building on the work of Conway and Thurston.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.