Abstract

Protein–protein docking algorithms aim to predict the structure of a complex given the atomic structures of the proteins that assemble it. The docking procedure usually consists of two main steps: docking candidate generation and their refinement. The refinement stage aims to improve the accuracy of the candidate solutions and to identify near-native solutions among them. During protein–protein interaction, both side chains and backbone change their conformation. Refinement methods should model these conformational changes in order to obtain a more accurate model of the complex. Handling protein backbone flexibility is a major challenge for docking methodologies, since backbone flexibility adds a huge number of degrees of freedom to the search space. FiberDock is the first docking refinement web server, which accounts for both backbone and side-chain flexibility. Given a set of up to 100 potential docking candidates, FiberDock models the backbone and side-chain movements that occur during the interaction, refines the structures and scores them according to an energy function. The FiberDock web server is free and available with no login requirement at http://bioinfo3d.cs.tau.ac.il/FiberDock/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.