Abstract

For future fusion reactors, tungsten (W) is currently the main candidate for the application as plasma‐facing material due to its several advanced properties. To overcome the brittleness of W, randomly distributed short W fiber‐reinforced W (Wf/W) composites have been developed using field‐assisted sintering technology (FAST). Herein, Wf/W materials with different fiber volume fraction (20–60%) are manufactured by FAST process to study the fiber volume fraction influence on the composite properties. Wf/W with ductile fibers and brittle fibers is produced using different tool setups during the production. Three‐point bending tests on prenotched samples, 4‐point bending tests, and tensile tests have been performed to determine the fracture behavior and flexural/tensile strength of the material. Wf/W materials with 30–40% fiber volume fraction exhibit a promising pseudoductile behavior, similar to fiber‐reinforced ceramic composites. However, Wf/W with 20% and >50% fiber volume fraction shows only a limited extrinsic toughening effect. In terms of flexural strength, with increasing fiber volume fraction, the tensile/flexural strength does not show a clear increasing tendency, or even lightly decreases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.