Abstract

Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

Highlights

  • Efficient microsensing systems are in demand because of their lower cost and smaller risk in launch [1]

  • This result indicates that the structure of the tapered fiber results in more light-leakage, and the evanescent field is enhanced through fiber tapering

  • Based on the measurement principle of the transmission spectra that the distribution of the spectra represents the characteristics of the surface modification, these results indicate that surface modification of the gold nanoparticles using mercaptopropyltrimethoxy silane (MPTMS) is better than that using aminopropyltrimethoxy silane (APTMS)

Read more

Summary

Introduction

Efficient microsensing systems are in demand because of their lower cost and smaller risk in launch [1]. As useful tools for measurement and analysis, optical biosensors find wide application in biorobotics, healthcare, pharmaceuticals, environmental monitoring, homeland security, and battlefield use [2]. A fiber optic localized surface plasmon resonance (FO-LPR) chemical and biochemical sensing platform has undergone rapid development recently [3,4]. To apply fiber optic technology to biosensors, numerous challenging issues must be addressed, including surface immobilization (e.g., analyte capture efficiency and elimination of nonspecific binding, among others) and detection format (e.g., direct binding, sandwichtype binding, and competitive binding) [5]. The current paper discusses the application of surface immobilization technology in fiber optical sensing. Surface plasmon resonance (SPR) technology is used to detect the concentration of biomolecules in solution, under the condition that surface immobilization on the tapered fiber is stable and uniform

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.