Abstract
Abstract Internal structures of the Moon are key to understanding the origin and evolution of the Earth–Moon system and other planets. The Apollo Passive Seismic Experiment detected thousands of lunar seismic events and vastly improved our understanding of the Moon’s interior. However, some critical questions like the state and composition of the core remain unsolved largely due to the sparsity of the Apollo seismic stations and the strong scattering of seismic waves in the top layer of the Moon. In this study, we propose the concept of a fiber seismic network on the Moon and discuss its potential in overcoming the challenges in imaging deep Moon structures. As an emerging technique, distributed acoustic sensing (DAS) can provide a cost-efficient solution for large-aperture and dense seismic network deployment in harsh environments. We compute lunar synthetic seismograms and evaluate the performance of DAS arrays of different configurations in retrieving the hidden core reflected seismic phase ScS from the strong scattered waves. We find that, compared to a sparse conventional seismic network, a fiber seismic network using tens of kilometers of cable can dramatically increase the chance of observing clear ScS by array stacking. Our results indicate that DAS could provide new opportunities for the future lunar seismic surveys, but more efforts and further evaluations are required to develop a space-proof DAS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.