Abstract

The paper aims to contribute to a better understanding and modeling of the shear behavior of reinforced-concrete (RC) beams strengthened with carbon fiber reinforced polymer (FRP) sheets. The study is based on an experimental program carried out on 11 beams with and without transverse steel reinforcement, and with different amounts of FRP shear strengthening. The test results provide some new insights into the complex failure mechanisms that characterize the ultimate shear capacity of RC members with transverse steel reinforcement and FRP sheets. After the discussion of the above topics, a new upper bound of the shear strength is introduced. It should be capable of taking into account how the cracking pattern in the web failing under shear is modified by the presence of FRP sheets, and how such a modified cracking pattern actually modifies the anchorage conditions of the sheets and their effective contribution to the ultimate shear strength of the beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.