Abstract
Laboratory investigations of the compressive behavior of fiber-reinforced polymer (FRP)-confined concrete columns have generally been carried out using relatively small-scale specimens, and the majority of theoretical models that have been developed so far are based on test data from such specimens. However, the use of small specimens may conceal possible scale effects. In this study, the influence of slenderness ratio and specimen size on axially loaded FRP-confined concrete columns was investigated experimentally, and the results have been compared to theoretical models and experimental results gathered from the published literature. The investigation aims to validate past results obtained from concrete cylinders and to verify existing empirical models as well. Three different specimen diameters and two slenderness (length-to-diameter) ratios, combined with two FRP-confinement materials, were varied as parameters. According to the statistical analysis of the results, it is shown that conventional FRP-confined concrete cylinders can effectively be used to model the axial behavior of short columns. Size effects, however, are clearly evident in very small (≈50 mm diameter) specimens. The usefulness of published results involving such small-scale specimens is therefore questionable, as is the validity of theoretical models and strength predictions based on test data from small-diameter specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.