Abstract

Carbon and SiC fiber-reinforced ceramic matrix composites were prepared via infiltration of fiber preforms using the polymer infiltration technique and polymer pyrolysis. Suitable silazane (SiCN) precursors with appropriate thermosetting behavior, viscosity and ceramic yield were synthesized, starting from functionalized chlorosilanes. Microstructural development and fracture behavior was studied after various infiltration and pyrolysis cycles. Residual stresses induced during processing were evaluated. Mechanical and thermo-physical properties of the composites with polymer-derived matrix, i.e. 3-pt bending strength and thermal expansion coefficients (CTE), were measured dependent on reinfiltration cycles and fiber orientation. The oxidation resistance was investigated. Specific pyrolyzed samples were infiltrated via silicon melts in order to enhance corrosion and wear resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call