Abstract

Macroscopic tensile and in-situ neutron diffraction measurements are reported from a 20.5 volume percent, 50.7 at% Ni-Ti fiber reinforced 6082-T6 aluminum matrix composite subjected to a room temperature, 4% tensile elongation. The austenite B2(110) diffraction intensity was essentially stable until approximately 0.9% strain, beyond which, the austenite B2(110) diffraction intensity strongly decreased with increasing tensile strain. The martensite M(001) diffraction intensity strongly increased from a zero intensity intercept at approximately 2.3% strain to the conclusion of tensile straining. This report concludes that the initial decrease in austenite B2(110) diffraction intensity locates the initiation of stress induced transformations in the NiTi reinforcement, furthermore this feature corresponds with an elevated yield point region in the macroscopic tensile results. Therefore, it appears that the elevated yield point region is caused by a temporary inhibition of fiber stress induced transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.