Abstract

In diffusion-weighted magnetic resonance imaging, the estimation of the orientations of multiple nerve fibers in each voxel (the fiber orientation distribution (FOD)) is a critical issue for exploring the connection of cerebral tissue. In this paper, we establish a convex semidefinite programming (CSDP) model for the FOD estimation. One feature of the new model is that it can ensure the statistical meaning of FOD since as a probability density function, FOD must be nonnegative and have a unit mass. To construct such a statistically meaningful FOD, we consider its approximation by a sum of squares (SOS) polynomial and impose the unit-mass by a linear constraint. Another feature of the new model is that it introduces a new regularization based on the sparsity of nerve fibers. Due to the sparsity of the orientations of nerve fibers in cerebral white matter, a heuristic regularization is raised, which is inspired by the Z-eigenvalue of a symmetric tensor that closely relates to the SOS polynomial. To solve th...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.