Abstract

ABSTRACTA fiber optic temperature sensor is reported based on the interference between the orbital angular momentum and Gaussian beams. A Mach-Zehnder interferometer was employed to convert the temperature signal to a light signal of the phase difference between the reference and measuring paths. The fiber Bragg grating is included in the fiber of the measuring path. Different from the traditional sensing of fiber Bragg gratings by wavelength interrogation, the temperature-dependent phase delay near Bragg wavelength was utilized in this design. The resolution of system was better than 0.01°C. Moreover, the sensitivity of the system was obtained across various ranges of temperature. This system has potential applications in temperature measurements that require high resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.