Abstract

In this study, a high-performance fiber optic surface plasmon resonance (FO-SPR) sensor using a dome array with nanogaps (DANG) is proposed for label-free real-time detection of biomolecules. A novel and simple method using polymer beads enables high sensitivity by allowing hotspots with nanometer spacing between the Au dome and the surrounding film. The nanodome structure, which comprises a polymer core and a Au shell, induces a localized surface plasmon, expands the sensing area, and extensively enhances the electromagnetic field. The refractive index sensitivity of the FO-SPR sensor with nanostructures, i.e., with nanogaps and nanodomes, was found to be 7.8 times higher than that of the FO-SPR sensor without nanostructures. The proposed sensor achieved a low detection limit of 38 fg/mL while quantifying thyroglobulin antibody-antigen interactions and exhibited excellent selectivity. In addition, it helped detect serum samples with a 103% recovery rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.