Abstract

We present an original method to improve the spatial resolution of a Brillouin distributed temperature and strain sensing system (DTSS). This method is shown to substantially improve the spatial resolution, while simultaneously strengthening the Brillouin backscattered light, which is based on the combination of an internal modulation of the laser source and an external modulator to generate two separate light pulses with different central wavelengths and pulse widths. Moreover, a novel Brillouin signal detection method, which we called isogenous heterodyne detection, is introduced, which is equivalent to a heterodyne detection scheme but is only with Rayleigh and Brillouin backscattered light without the need of an extra reference light. These new technical approaches have been incorporated into a fiber optic DTSS with 13 km single-mode fiber, which clearly successfully demonstrated all the advantages over conventional DTSS approaches in theory and the feasibility in experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.