Abstract

A Cd/sub 1-x/Mn/sub x/Te (CMT) fiber optic magnetic field sensor has been developed with the use of a laser ablation deposition technique: pulsed laser evaporation and epitaxy (FLEE). This method of growth yields high-quality material and due to the low-temperature deposition it enables integration of CMT in optoelectronic systems. A disk-shaped sensor structure of diameter and thickness less than 3 mm and 75 /spl mu/m, respectively, is incorporated in a fiber optic system. A linear response of the sensor held at room temperature has been measured in the magnetic field up to 0.8 T; however, its usefulness for measurements of the field above 25 T is expected. Due to its small physical dimension and the potential of high-speed operation in the gigahertz range, the sensor can be particularly useful in the measurements of spatial and temporal uniformity of the magnetic field. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call