Abstract

This Letter proposes and demonstrates a novel, miniature fiber-tip temperature sensor with a tapered hollow capillary tube (HCT) filled with glycerin and dye-doped cholesteric liquid crystal (CLC). The function of glycerin is to provide a surface anchoring force to control the uniform orientation of CLC molecules, so that the CLC in the tapered HCT can be considered as a mirrorless photonic bandgap (PBG) microcavity. An unambiguously identifiable PBG mode single peak appears in the emission spectra of the sensor. The CLC-based fiber-tip temperature sensor has a temperature sensitivity of -9.167nm/∘C, and the figure of merit can reach 67.4∘C-1. This sensor offers key features and advantages, including compactness, unambiguous identifiability, and biocompatibility, which can satisfy requirements of temperature measurement in various temperature sensing application fields and has great potential for biochemical detection at cell level. In addition, the CLC was integrated into the optical fiber terminal, and the PBG mode is excited, collected and transmitted by the multimode fiber coupler, which is reported for the first time, to the best of our knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.