Abstract

Fiber loop optical buffers enable data storage for discrete time intervals and therefore appear suitable for applications in optical asynchronous transfer mode (OATM)-based networks where data are transmitted in cells of fixed length. In this paper, the feasibility and the limitations of optical data storage in a fiber loop optical buffer are studied theoretically and experimentally, A model of a fiber loop buffer, incorporating semiconductor laser amplifiers (SLA) as switching gates, is described. The two major interfering quantities are cross talk and amplified spontaneous emission of the SLA gates. To limit the impact of cross talk on the signal quality, an on/off ratio of the SLA gates of at least 30 dB is required. The paper describes the optimum operation conditions, which enable data storage for more than 100 circulations even for data rates in the range from 10 to 160 Gb/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.