Abstract

Abstract New extensional mixing elements (EME) for twin-screw extrusion were applied to compound glass fibers (GF), carbon fibers (CF) or polyethylene terephthalate fibers (PETF) reinforced polymer composites with polymer matrix of polypropylene (PP) or polyethylene oxide (PEO) and the resulting fiber degradation upon processing was evaluated and compared with compounding via shear flow-dominated kneading blocks (KB). Composites structures were characterized in terms of fiber length and distribution, and cumulative length ratio, at five locations along the mixing zone. Although significant fiber breakage was achieved for both configurations, it was markedly lower in composites processed using the EME, because whereas the high shear stress kneading motion in the KB degrades fibers significantly, fiber breakup is significantly minimized by the alignment induced by the EME prior to flow in the high-stress regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.